Bayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function

نویسنده

  • Azadeh Kiapour Department of‎ ‎Statistics‎, Babol Branch, Islamic Azad University, Babol, ‎Iran
چکیده مقاله:

In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In this paper, we study the E-Bayes and robust Bayes premium estimation and prediction in exponential model under the squared log error loss function. A prequential analysis in a simulation study is carried out to compare the proposed predictors. Finally, a real data example is included for illustrating the results  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BAYES ESTIMATION USING A LINEX LOSS FUNCTION

This paper considers estimation of normal mean ? when the variance is unknown, using the LINEX loss function. The unique Bayes estimate of ? is obtained when the precision parameter has an Inverse Gaussian prior density

متن کامل

Empirical Bayes Estimation in Nonstationary Markov chains

Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical  Bayes estimators  for the transition probability  matrix of a finite nonstationary  Markov chain. The data are assumed to be of  a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...

متن کامل

Robust Bayes and Empirical Bayes Analysis with # -Contaminated Priors

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...

متن کامل

Lower Bounds for Bayes Error Estimation

ÐWe give a short proof of the following result. Let …X; Y † be any distribution on N f0; 1g, and let …X1; Y1†; . . . ; …Xn; Yn† be an i.i.d. sample drawn from this distribution. In discrimination, the Bayes error L ˆ infg Pfg…X† 6ˆ Y g is of crucial importance. Here we show that without further conditions on the distribution of …X; Y †, no rate-of-convergence results can be obtained. Let n…X1; ...

متن کامل

Empirical Bayes and Full Bayes for Signal Estimation

We consider signals that follow a parametric distribution where the parameter values are unknown. To estimate such signals from noisy measurements in scalar channels, we study the empirical performance of an empirical Bayes (EB) approach and a full Bayes (FB) approach. We then apply EB and FB to solve compressed sensing (CS) signal estimation problems by successively denoising a scalar Gaussian...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 17  شماره None

صفحات  33- 47

تاریخ انتشار 2018-06

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023